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ABSTRACT
Most current mutual information (MI) based feature se-
lection techniques are greedy in nature thus are prone to
sub-optimal decisions. Potential performance improvements
could be gained by systematically posing MI-based feature
selection as a global optimization problem. A rare attempt
at providing a global solution for the MI-based feature selec-
tion is the recently proposed Quadratic Programming Fea-
ture Selection (QPFS) approach. We point out that the
QPFS formulation faces several non-trivial issues, in partic-
ular, how to properly treat feature ‘self-redundancy’ while
ensuring the convexity of the objective function. In this pa-
per, we take a systematic approach to the problem of global
MI-based feature selection. We show how the resulting NP-
hard global optimization problem could be efficiently ap-
proximately solved via spectral relaxation and semi-definite
programming techniques. We experimentally demonstrate
the efficiency and effectiveness of these novel feature selec-
tion frameworks.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Feature evaluation and se-
lection

Keywords
Feature selection; mutual information; spectral relaxation;
semi-definite programming; global optimization.

1. INTRODUCTION
Mutual information (MI) based approaches are an im-

portant feature selection paradigm in data mining. Over
the years, these methods have gained increasing popular-
ity, thanks especially to their ease of use, effectiveness and
strong theoretical foundation rooted in information theory.
Seventeen MI based feature selection approaches are listed
in a recent comprehensive survey [3], summarizing nearly
two decades of research in this area. The commonality of
these methods lies in the fact that they all employ a greedy
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scheme to incrementally build the selected feature set, one
at a time.

To gain some concreteness to our discussion, let us revisit
a very popular mutual information-based feature selection
family that is centred around the concepts of redundancy
and relevancy. A particularly successful and well known in-
stance of this family is the Minimum Redundancy Maximum
Relevance (MRMR) framework [20]. Given a set of n fea-
tures (which are often referred interchangeably to as vari-
ables, or attributes) X = {X1, . . . , Xn} and a target class
variable C, the relevancy of Xi is measured by its mutual
information (MI) with the class variable, i.e.,

Rel(Xi) , I(Xi;C) ,
∑
Xi,C

P (Xi, C) log
P (Xi, C)

P (Xi)P (C)

while its redundancy with respect to an already selected
feature subset S is defined as

Red(Xi|S) ,
1

|S|
∑
Xj∈S

I(Xi;Xj)

Given these definitions of feature relevancy and redundancy,
the MRMR framework [20] is a greedy scheme to select fea-
tures one at a time, such that the i-th feature is selected
maximizing the MRMR-objective:

max
Xi∈X\S

{Rel(Xi)−Red(Xi|S)}

The generalized MRMR family is parameterized as

MRMR : max
Xi∈X\S

I(Xi;C)− α
∑
Xj∈S

I(Xi;Xj)

 (1)

where α is a weighting factor that balances relevancy and re-
dundancy, which is chosen to be 1/|S| in the case of MRMR.
The first member of this family, known as MIFS (Mutual In-
formation Feature Selection) [2] with α = 1, has been in fact
introduced much earlier in the feature selection literature.

1.1 Global MI-based feature selection
Most current MI-based feature selection approaches are of

an incremental nature, similar to the MRMR formulation.
As such, these methods are prone to suboptimal decisions,
as selected features cannot be deselected at a later stage.
Potential performance improvement could be gained by sys-
tematically posing MI-based feature selection as a global
optimization problem, and making a global decision con-
sidering the interaction between all features concurrently.
The first attempt in this direction is the recently proposed



Quadratic Programming Feature Selection (QPFS) approach
[21]. QPFS reformulates the MRMR feature selection prob-
lem as the following quadratic program:

QPFS : min
x

{
αxTHx− xT f

}
s.t.

n∑
i=1

xi = 1, xi ≥ 0 (2)

where fn×1 = [I(X1;C), . . . , I(Xn;C)]T is the vector of fea-
ture relevancy, Hn×n = [I(Xi;Xj)]i,j=1...n is the matrix
of feature pairwise redundancy, and xn×1 represents rela-
tive feature weights. Note that Hii is set to feature self-
redundancy, i.e. entropy, Hii = I(Xi;Xi) = H(Xi). The
most attractive characteristic of the QPFS formulation in
(2) is that if H is positive (semi)definite, then QPFS is a
convex quadratic program which can be solved efficiently
in polynomial time for the globally optimal solution. The
output x of this program is used for global feature ranking.

1.2 Theoretical issues with the QPFS frame-
work

The reformulation of the incremental MRMR as a global
quadratic program QPFS as proposed in [21], although being
very attractive, poses several non-trivial intriguing questions
that we shall elaborate below.
• Positive definiteness of H: A pre-requisite for QPFS

to be a convex quadratic program, thus admitting an ef-
ficient polynomial-time procedure to find the global mini-
mum, is that the Hessian matrix H of pairwise feature mu-
tual information be positive (semi)definite. In other words,
the mutual information function on the space of features
must be a proper kernel function. Our investigation into
this problem shows that there is currently little understand-
ing on whether the MI is a proper kernel. While we have
not been able to theoretically prove nor disprove the pos-
itive definiteness of H, our practical evaluation of QPFS
using Matlab quadratic program solver sometimes numeri-
cally encounters indefinite H (for instance, the largest nega-
tive eigenvalue could be as large as −50 on a dataset of 2000
features), where Matlab solver declares the problem to be
non-convex and aborts the operation.

In the original paper [21], this theoretical issue has been
mostly neglected. For problems of a very large number of
features, the authors proposed to approximate H using only
its largest eigenvalues, so QPFS becomes convex. However,
as there exist many small and medium size problems where
an approximation might not be needed, establishing the pos-
itive definiteness of H is still required to ensure the theoret-
ical soundness of the approach.
• How to treat self-redundancy? In QPFS, note that

the cost matrix H penalizes features for their redundancy
with respect to other features. The ‘self-redundancy’ terms
Hii = I(Xi;Xi) = H(Xi), as designated in the original pa-
per [21], in fact penalize features for their intrinsic entropy.
The question of how to treat self-redundancy presents us
with the following dilemmas:

– Arguably, features should not be penalized for self re-
dundancy. Unfortunately, if we put Hii = 0, then the Hes-
sian matrix H becomes indefinite, violating the pre-requisite
for the QPFS formulation to be convex.

– If we put Hii = H(Xi) as proposed in [21], then there
will be selection bias in favor of features with low entropy.
In general, discrete features may have higher entropy be-
cause of more uniform distribution across its categories, or
having more categories. As we will theoretically and empir-

ically show next in this paper, penalizing features for self-
redundancy leads to undesired behaviors.

Example 1 : We use a simple example here to show the
counter-intuitive behavior of QPFS that penalizing features
differently based on their entropy can lead to suboptimal
decisions. Let us consider the following scenario, where
a quaternary variable S (Smoking) takes 4 possible val-
ues ((1) none smoker; (2) 1 to 5 cigarettes per day; (3)
5 to 15 cigarettes per day; (4) more than 15 cigarettes
per day). S causes the binary class variable C (0–none,
1–lung cancer) with joint probability distribution P (S,C).
C then in turn causes a binary characteristic feature G
(Coughing, 0–occasionally, 1–frequently) with joint proba-
bility P (C,G). The scenario is denoted by the Bayesian
network and joint probability tables in Figure 1. The joint
probability P (S,G) can also be calculated as in Fig. 1. In
this example, S can be used to perfectly classify C (using
the rule C = 0 if S ∈ {1, 2} and C = 1 otherwise), while
if G were used the minimal error rate achievable, i.e. Bayes
error rate, will be 5%. Thus S–smoking should be clearly
preferred over G–coughing as a predictive feature for C–lung
cancer, albeit having a higher entropy, i.e. 2 bits vs. 1 bit.
We can compute the following quantities:

I(G;C) = 0.7136 bit

I(S;C) = 1 bit

I(S;G) = 0.7136 bit

The optimal solution to the QPFS formulation

min
xi>0,

∑
xi=1

{
xT

[
2 0.7136

0.7136 1

]
x− xT

[
1

0.7136

]}
(3)

is x∗ = [0.42, 0.58]T , that is, the coughing G (weight 0.58)
is ranked higher than smoking S (weight 0.42), which is
incorrect.

C

Lung Cancer

S

Smoking

G

Coughing

P(S,C) C=0 C=1
S=1 0.25 0
S=2 0.25 0
S=3 0 0.25
S=4 0 0.25

P(C,G) C=0 C=1
G=0 0.475 0.025
G=1 0.025 0.475

P(S,G) G=0 G=1
S=1 0.2375 0.0125
S=2 0.2375 0.0125
S=3 0.0125 0.2375
S=4 0.0125 0.2375

1

Figure 1: The three-variable example: QPFS gives
preference to the feature with smaller entropy G,
while S is a better explanatory variable for C albeit
having a higher entropy.

1.3 Contribution
Motivated by the initial success as well as the theoretical

gap within the QPFS framework, we set out to systemati-
cally investigate the problem of global MI-based feature se-
lection. Our first contribution in this paper is to reconsider
the QPFS formulation and resolve the theoretical issues as-
sociated with its current form, as discussed above. Our sec-
ond, and principal contribution, is to propose a novel for-
mulation for global MI-based feature selection that can be
solved effectively via spectral relaxation and semi-definite
programming techniques. Via extensive experiments on a



wide range of data sets, we establish the effectiveness and
efficiency of our approach against other successful MI based
feature selection techniques. We further show that for large
data, low rank approximation can be applied to gain com-
putational advantage to our global algorithm over its greedy
counterpart.

2. PRELIMINARIES
It is worth noting that, in the original paper [21], the au-

thors propose the quadratic formulation (2) without much
explanatory detail. While that formulation is intuitively rea-
sonable, let us take a more systematic, step-by-step deriva-
tion process implied behind QPFS, through which the in-
consistency within QPFS itself will also be exposed. From
a global optimization perspective, the incremental MRMR

feature selection problem (1) can be reconsidered as a global
subset-selection problem as follows:

SS : max
S⊂X
|S|=k


∑
Xi∈S

I(Xi;C)− α
∑

Xi,Xj∈S
i 6=j

I(Xi;Xj)

 (4)

which can in turn be equivalently formulated as a quadratic
integer programming problem as

QIP : max
x

{
xT f − αxTHx

}
s.t. x ∈ {0, 1}n,

n∑
i=1

xi = k

(5)
Here, k is the desired size for the final feature set, fn×1 =
[I(X1;C), . . . , I(Xn;C)]T is still the vector of feature rele-
vancy, and Hn×n = [I(Xi;Xj)]i,j=1...n is still the matrix
of feature pairwise redundancy, except Hii = 0, i.e. zero-
valued ‘self-redundancy’ terms. Note that this is also the
critical difference between our global formulation and QPFS:
clearly and naturally, there should be no penalty for feature
self-redundancy, as evidenced in the MRMR and SS formu-
lations.

Unfortunately, there is no known efficient solution for both
SS and QIP. SS is a hard combinatorial problem for which
an exhaustive search will cost O(nk), i.e. exponential in the
target set size, while similarly QIP is known to be an NP-
hard problem [5]. Noting that relaxing the problem to the
continuous domain might lead to a more computationally
tractable problem, we drop the integral 0–1 constraint, re-
sulting in

max
x

{
xT f − αxTHx

}
s.t.

n∑
i=1

xi = k, xi ≥ 0 (6)

With a change of variable yi = xi/k, we arrive at:

min
y

{
kαyTHy − yT f

}
s.t.

n∑
i=1

yi = 1, yi ≥ 0 (7)

Herein, kα plays the role of a dynamic balancing factor.
The QPFS formulation (2) is essentially a simplified variant
of (7), where one disregards k and fixes the balancing factor
to the same constant, i.e. α.

2.1 The extended MRMR family
Before providing a systematic analysis on how convexity

could be ensured and ‘self-redundancy’ should be treated in
the QPFS framework, let us gain further insight into both

MRMR and QPFS by considering an extended MRMR fam-
ily that incorporates second-order dependancy. The ma-
terial discussed in this section will also serve as building
blocks for our new approach, presented in Section 3. We
start by elaborating the theoretical underpinnings behind
MRMR and other similar heuristics. The ultimate goal of
mutual information (MI) based feature selection is to select
a subset of features S that shares the highest MI with C, i.e.
maxS⊂X I(S;C). As this is a hard combinatorial problem, a
practical approach is to build the feature subset incremen-
tally, so that the i-th feature is selected as:

arg max
Xi∈X\S

I(S ∪Xi;C) ≡ arg max
Xi∈X\S

I(Xi;C|S) (8)

As the high-dimensional MI term I(Xi;C|S) is still hard to
estimate from limited samples, MRMR and many other MI-
based heuristics approximate (8) using low-order MI terms
as:

I(Xi;C|S) ' I(Xi;C)− 1

|S|
∑
Xj∈S

I(Xi;Xj) (9)

However, the following natural decomposition of I(Xi;C|S)

I(Xi;C|S) = I(Xi;C)− [I(Xi; S)− I(Xi; S|C)] (10)

suggests that redundancy is in fact composed of two parts:
an unconditional redundancy term I(Xi; S) and a class con-
ditional part I(Xi; S|C) [6]. This insight gives rise to the
following extended minimal redundancy maximal relevance
(EMRMR) objective:

EMRMR : max
Xi

I(Xi;C)− α
∑
Xj∈S

[I(Xi;Xj)− I(Xi;Xj |C)]

 (11)

This variant of MRMR has been introduced in the litera-
ture and observed to be more effective [3, 13, 14]. Similar
to MRMR, EMRMR can be cast as an extended quadratic
programming feature selection (EQPFS) problem as:

EQPFS : min
x

{
αxT [H1 −H2]x− xT f

}
s.t.

n∑
i=1

xi = 1, xi ≥ 0 (12)

Here, H1 = [I(Xi;Xj)]n×n and H2 = [I(Xi;Xj |C)]n×n to-
gether make up the ‘total-redundancy’ matrix H = H1−H2.
Similar to the QPFS formulation, we are presented with dif-
ferent choices about how to treat the total-self-redundancy
terms, i.e. the diagonal elements of H1 and H2.

- If we set H1ii = H2ii = 0, i.e. no penalty for self-
total-redundancy, then H is indefinite, hence EQPFS is non-
convex and a global solution cannot be efficiently located.

- If we set H1ii = I(Xi;Xi) = H(Xi) as in the original
QPFS formulation [21], then analogously, H2ii should be
set to I(Xi;Xi|C) = H(Xi|C). Thus Hii = H1ii −H2ii =
H(Xi)−H(Xi|C) = I(X;C), i.e. features which share more
information with C are penalized more, which is clearly
counter-intuitive and undesirable. In the next section, we
provide a systematic analysis on how self-redundancy in the
QPFS and EQPFS frameworks should be treated.

2.2 How to properly treat self-redundancy?
We argue that the most proper approach for treating self

redundancy is that, there should be no penalty for self re-
dundancy, i.e. Hii = 0, as clearly evident in the original



MRMR formulation. This choice however leads us to a non-
convex quadratic program. We shall point out here that
assigning Hii = H(Xi) as in [21] in fact provides a convex
approximation to the originally non-convex quadratic pro-
gram. However, setting Hii = H(Xi) leads to some counter-
intuitive observation about QPFS (higher penalty for fea-
tures with higher entropy) and EQPFS (higher penalty for
features which share higher MI with C) as we have pointed
out.

We propose that QPFS and EQPFS could be convexified
by setting the diagonal elements of H to the same value λ >
0 sufficiently large to ensure the positive (semi)definiteness
of the Hessian matrix. Formally, the general convexified
EQPFS is as follows:

min
x,

∑n
i=1 xi=1,xi≥0

{
αxT [H1 − βH2 + λI]x− xT f

}
(13)

where I is the identity matrix, both α and β play the role of
balancing factors, and λ is a convexification parameter. β is
employed to balance the unconditional redundancy (in H1)
and the class conditional redundancy (in H2), as proposed
in [14]. At β = 0, EQPFS reduces to the original QPFS.
With this approach, all features receive the same penalty
for ‘self-redundancy’ λ, although the real purpose of λ is
to convexify the problem, not to impose a penalty on self-
redundancy. It is noted that different choices of {α, β, λ} can
lead to different solutions corresponding to different feature
rankings.

3. A NOVEL GLOBAL MI-BASED FEATURE
SELECTION PARADIGM

In this section, we set out to design a novel, systematic
global approach for MI-based feature selection. Our desider-
ata for such an ideal global framework is two-fold: (i) ability
to handle second-order feature dependancy as in EMRMR,
(ii) strong theoretical foundation, with few or no ad-hoc pa-
rameters, such as the balancing parameters and convexifica-
tion parameter as in the ‘remedied’ QPFS framework (13).

Our first ingredient for such new framework is the fol-
lowing nice theoretical result, which states that the rele-
vancy, unconditional redundancy and class-conditional re-
dundancy, can all be combined neatly into a single quantity,
namely the conditional mutual information (CMI).

Theorem 1. We have:∑
Xj∈S

I(Xi;C|Xj) = |S|I(Xi;C) (14)

−
∑
Xj∈S

[I(Xi;Xj)− I(Xi;Xj |C)]

Proof. The proof is straightforward using the following
decomposition of the conditional MI:

I(Xi;C|Xj) = I(Xi;C)− I(Xi;Xj) + I(Xi;Xj |C) (15)

In fact, now we can see a chain of relationship between the
high-dimensional conditional relevancy term in (8), the CMI
and the extended MRMR criteria:

I(Xi;C|S) '
∑

Xj∈S I(Xi;C|Xj) (16)

≡ |S|I(Xi;C)−
∑

Xj∈S[I(Xi;Xj) + I(Xi;Xj |C)]

In light of these connections, we propose a global subset
selection problem based on the CMI as follows:

SSCMI : max
S⊂X
|S|=k

∑
Xi∈S

I(Xi;C) +
∑

Xi,Xj∈S

I(Xi;C|Xj)

 (17)

which can be equivalently reformulated in the form of a
quadratic integer programming problem:

QIPCMI : max
x

{
xTQx

}
s.t. x ∈ {0, 1}n, ‖x‖ =

√
k (18)

where Qii = I(Xi;C) and Qij = I(Xi;C|Xj), i 6= j. Note

that for x ∈ {0, 1}n, we have
∑n

i=1 xi = k ⇔ ‖x‖ =
√
k.

Here we use the norm constraint for set cardinality, as it
results in more computationally tractable relaxations, as
will be seen in the next sections. It is noted that Q is, in
general, asymmetric. However, it could be replaced by the
symmetric form (Q+QT )/2 without changing the objective
value. Thus hereafter, Q refers to the matrix with Qij =
1
2
{I(Xi;C|Xj) + I(Xj ;C|Xi)} , i 6= j and Qii = I(Xi;C).

It can be seen that our Hessian matrix Q embodies both
the notions of relevancy and total redundancy. With this
novel formulation, we have resolved several issues associated
with the self-redundancy terms, as well as eliminating the
need of introducing (and thus, tuning) the balancing factors
α, β and the convexification parameter λ, as in the general
EQPFS formulation.

We now present an interesting geometrical interpretation
for the CMI criterion as follows. Besides relevancy, the
global subset selection formulations SSCMI and QIPCMI favor
features having large total pairwise conditional relevance.
It is interesting to note that the quantity dC(Xi, Xj) =
I(Xi;C|Xj) + I(Xj ;C|Xi) could be regarded as a distance
measure in the feature space. Sotoca and Pla [22] fur-
ther claimed that this distance measure, named the con-
ditional mutual information distance, is a proper metric,
that is, it satisfies the triangle inequality1. The interpre-
tation of dC(Xi, Xj) as a distance measure brings about
an interesting insight on SSCMI, which can be rewritten as

max S⊂X
|S|=k

{∑
Xi∈S I(Xi;C) + 1

2

∑
Xi,Xj∈S dC(Xi, Xj)

}
. This

criterion selects k features such that their total relevance
and total pairwise distance is maximized. In other words,
the criterion aims to choose a set of highly relevant repre-
sentative features that also provide good coverage over the
feature space, i.e. far apart from each-other in CMI distance.

As QIPCMI is NP-hard, in the next sections we investigate
efficient approximation techniques for solving this problem.

3.1 Global MI-based feature selection via spec-
tral relaxation

We propose an efficient yet simple spectral relaxation tech-
nique for solving QIPCMI. We shall relax QIPCMI to the con-
tinuous domain, by dropping the integral 0–1 constraints
which in fact cause NP-hardness, while keeping only the

1We recently pointed out that Sotoca and Pla’s proof is
flawed, and that the triangle inequality holds true under the
Näıve Bayes assumption, i.e. all the features are independent
given the class variable [24]. Whether the CMI distance is
a proper metric in general is still an open problem.



norm constraint, resulting in

max
x

{
xTQx

}
s.t. ‖x‖ =

√
k, xi ≥ 0

$ SPECCMI : max
x

{
xTQx

}
s.t. ‖x‖ = 1, xi ≥ 0 (19)

where $ denotes equivalence in feature ordering, noting that
replacing ‖x‖ =

√
k with ‖x‖ = 1 only scales the solution

by a multiplicative constant 1/
√
k. The non-negativity con-

straints xi ≥ 0 ensure that the relaxed solution can be rea-
sonably interpreted as feature ‘weights’.

Without the non-negativity constraints xi ≥ 0, albeit be-
ing a non-convex problem in general, SPECCMI admits a
simple global solution which coincides with that maximiz-

ing the well-known Rayleigh quotient of the form xTQx
xT x

. The
solution to this problem is any unit-norm eigenvector cor-
responding to the dominant eigenvalue of Q [10]. At opti-
mality, the dominant eigenvalue of Q is also the maximum
objective value. When the entries in Q are all non-negative,
as I(Xi;C|Xj) ≥ 0, then we can prove the following result:

Theorem 2. If Qij ≥ 0 ∀i, j then:
(i) the optimal solution x∗ for max‖x‖=1

{
xTQx

}
must be

sign-consistent, i.e. having all x∗i ’s of the same sign.
(ii) any dominant eigenvector of Q must be sign-consistent.
(iii) if there exists a dominant eigenvector x∗ having x∗i >

0, ∀i, i.e. strictly positive, then its eigenvalue must be the
unique dominant eigenvalue of Q.

Proof. (i) Assume that x∗ has mixed-sign components,
as Qij ≥ 0 ∀i, j the value of the quadratic form x∗TQx∗ =∑

i,j x
∗
i x
∗
jQij can always be increased by assigning the same

sign to all x∗i ’s (still satisfying ‖x∗‖ = 1), contradicting the
assumption that x∗ is the globally optimal solution.

(ii) We shall note that the critical points and critical val-
ues of max‖x‖=1

{
xTQx

}
are respectively all the unit-norm

eigenvectors of Q and their eigenvectors. In case Q has
duplicate dominant eigenvalues, all their associated eigen-
vectors are globally optimal solution for max‖x‖=1

{
xTQx

}
,

and therefore must be sign-consistent, as per (i).
(iii) As x∗i > 0, there cannot exist any other sign-consistent

(dominant) eigenvector that is orthogonal to x∗, thus its
eigenvalue must be the unique dominant eigenvalue of Q.

In view of this result, we can use any unit-norm dominant
eigenvector of Q with all non-negative entries as the solution
to SPECCMI. As for the feature ranking purpose, features
with higher weights xi will appear higher in the ranking, i.e.
more important features. It is noted that in the SPECCMI

formulation, the Hessian Q is not required to be positive
semidefinite as in the QPFS formulation.

Example 1 revisited : we have

I(G,C|S) = I(G;C)− I(G;S) + I(G,S|C) = 0 bit

I(S,C|G) = I(S;C)− I(G;S) + I(G,S|C) = 0.2864 bit

The solution to the SPECCMI formulation

max
‖x‖=1,xi≥0

{
xT

[
1 0.2864/2

0.2864/2 0.7136

]
x

}
(20)

is x∗ = [0.92, 0.38]T , that is, smoking S (weight 0.92) is
ranked higher than coughing G (weight 0.38).

3.2 Global MI-based feature selection via semi-
definite programming

In this section, we investigate another strategy for solv-
ing the integer quadratic programming problem QIPCMI, via
semi-definite programming. Semi-definite relaxation has re-
cently gained increasing interest as an effective approxima-
tion tool for solving hard combinatorial problems. This sig-
nificant interest was sparked by the seminal work of Goe-
mans and Williamson [11] in approximating the NP-hard
max-cut problem in graph theory,

MAXCUT : max
x
{xTLx} s.t. x ∈ {−1,+1}n (21)

where L is the graph Laplacian matrix. As semidefinite
programming (SDP) is known to generate tighter approxi-
mation for MAXCUT over spectral relaxation, here we are
interested in seeing whether for the QIPCMI problem, SDP
can significantly improve over spectral relaxation as pre-
sented above. In order to employ the semidefinite relaxation
technique in [11], we first transform the binary 0–1 problem
QIPCMI into a bipolar −1/+1 problem similar to MAXCUT,
via the transformation xi = yi+1

2
, resulting in

max
y

{
1

4
(y + 1)TQ(y + 1)

}
(22)

s.t. y ∈ {−1, 1}n, (y + 1)T I(y + 1) = 4k

where 1n×1 is the vector of all 1’s. Note that we could
rewrite the norm constraint ‖x‖ =

√
k as xT Ix = k where

In×n is the identity matrix, hence (y + 1)T I(y + 1) = 4k.
Since the problem (22) is not in a homogeneous quadratic
form, we shall transform it back to an equivalent homo-
geneous form via simply introducing an additional dummy
variable y0 = 1 (the variable expansion trick [27]), i.e. y =
{y0 ≡ 1, y1, . . . , yn}, resulting in

max
y

yT Q̂y (23)

s.t. y0 = 1,y ∈ {−1, 1}n+1,yT Îy = 4k

where Q̂(n+1)×(n+1) =

[
1TQ1 1TQ
Q1 Q

]
and Î(n+1)×(n+1) =[

1T I1 1T I
I1 I

]
. We further note that the constraint y0 =

1 could also be relaxed to y0 ∈ {−1, 1}. This is because
homogeneous quadratic problems are symmetric in y and
−y, therefore if y∗ is optimal, then −y∗ will also be optimal,
and we simply need to pick the solution with y∗0 = 1 as the

final solution. Now, note that the quadratic form yT Q̂y can

also be rewritten as Q̂ • yyT , where U •V =
∑

i,j UijVij ,
we arrive at:

max
y

Q̂ • yyT (24)

s.t. y ∈ {−1, 1}n+1, Î • yyT = 4k

We next substitute Y = yyT , noting that an arbitrary ma-
trix could only be factorized as such iff Y � 0, i.e. Y is
positive semidefinite, and rank(Y) = 1. Also note that for
yi ∈ {−1, 1} we have yi.yi = 1⇔ diag(Y) = 1, we arrive at

max
Y

Q̂ •Y (25)

s.t. Î •Y = 4k, diag(Y) = 1,Y � 0, rank(Y) = 1

Until now we have not yet gained any computational ad-
vantage, as the problem (25) is still exactly equivalent to



the NP-hard QIPCMI problem. The specific constraint that
causes NP-hardness in this case is the rank-1 constraint,
since without it, the following problem can be solved to op-
timality in polynomial time via semidefinite programming
[18]:

SDPCMI : max
Y

Q̂ •Y (26)

s.t. Î •Y = 4k, diag(Y) = 1,Y � 0

After solving SDPCMI we need to recover the discrete {−1,+1}
solution to (23), a process known as rounding. Herein, we
simply adapt the random projection rounding technique pro-
posed in [11], with 100 random projections. In each projec-
tion, the top k features are selected as the ones with cor-
responding rows Yi· having largest cosine similarity to a
randomly picked vector uniformly distributed on the unit
hypersphere in Rn+1. Finally, the random projection that
results in largest value for the original QIPCMI problem is
selected. Interested readers are referred to [11] for these
details.

3.3 Complexity analysis
For all methods, generally there will be time needed for

computing the similarity matrix and the time needed for
ranking the features. The time for computing MI quanti-
ties, such as I(Xi;Xj) and I(Xi;C|Xj) comprises mainly
O(d) time for computing the joint probability table. Thus,
the time for computing the similarity matrix is O(n2d). The
ranking time complexity for MRMR, SPECCMI and SDPCMI

is provided in Table 1. The dominant time component for
MRMR and SPECCMI is in fact, for computing the similar-
ity matrix, rather than ranking. In terms of ranking time,
SPECCMI is significantly less expensive than QPFS, while
SDPCMI is the most expensive.

Table 1: Ranking complexity in the number of fea-
tures n.

Method MRMR SPECCMI QPFS SDPCMI

Complexity O(n2) O(n2) O(n3) O(n4.5)

It is noted that greedy algorithms, such as MRMR, fill
the similarity matrix gradually and could be stopped at any
point to produce a partial ranking. In data mining and
knowledge discovery, it is also often desirable to produce a
complete ranking of all features. Indeed, while the top rank-
ing features are important for building accurate classifiers,
features with low ranks are important for understanding the
data generating process. Such knowledge could be used, for
example, to improve the data collecting process, where the
least important features could be omitted from data collec-
tion. Also, a domain expert may be interested in studying
how a feature of interest is ranked compared to others, in
such case a complete ranking of all features is required.

3.4 Global feature selection for large data
For large data, computing the kernel-like matrix Q itself

becomes expensive. Herein, we investigate a strategy to re-
duce this cost via low-rank approximation for Q, in partic-
ular via the Nyström method. Nyström based methods for
large-scale data analysis have been successfully applied on
numerous problems in the pattern recognition and machine
learning literature [9,15]. Without loss of generality, we can

assume Q in the SPECCMI formulation (19) to be positive
semi-definite. Indeed

SPECCMI : arg max
‖x‖=1,xi≥0

{
xTQx

}
≡ arg max
‖x‖=1,xi≥0

{
xT (Q + λI)x

}
where λ can be chosen as a sufficiently large positive con-
stant without affecting the ranking. Nyström method ap-
proximates the positive semi-definite Q as

Q̃ =

[
A B
BT BTA−1B

]
using only a subset of p = γn rows of Q, namely those
comprising [Ap×p Bp×(n−p)], where the rows are usually
randomly sampled without replacement and 0 < γ < 1 is
the Nyström sampling rate. A useful characteristic of the
Nyström approximation is that the approximated solution
to the SPECCMI formulation, namely the dominant eigen-

vector of Q̃, could be computed exactly from submatrices
of much smaller size, without explicitly evaluating the block

BTA−1B and fill in Q̃. This could be very useful for sit-
uations where the number of features is large, such that

merely storing Q̃n×n could already be a problem. Let A
1
2

denote the symmetric positive definite square root of A, de-

fine Âp×p = A + A−
1
2 BBTA−

1
2 then the dominant eigen-

vector of Q̃ is simply

σ−
1
2

[
A
BT

]
A−

1
2 u

where σ and u are the dominant eigenvalue and its associ-

ated eigenvector of Â [9]. The complexity of the Nyström
approximated solution is O(γn2d) for computing the simi-
larity matrix and O(γn2+γ2n2) for ranking. One remaining
detail left is that although Q is entry-wise positive, it is not
guaranteed that this property carries over to its approxima-

tion Q̃. Thus, Q̃ can have negative elements and as a results,
its dominant eigenvector can have negative entries. In such
cases, we induce a global ranking as follows. First, the prob-
lem is converted from a binary 0–1 problem to an equivalent
bi-polar +1/-1 problem as in (22). Then a dummy variable
x0 ≡ 1, which is supposed to be always chosen, is included

as in (23). The dominant eigenvector of

[
1T Q̃1 1T Q̃

Q̃1 Q̃

]
with the first entry (corresponding to x0) being positive is
chosen for feature ranking where the weights are sorted in
descending order.

In [21] Nyström approximation was also applied for ap-
proximating the QPFS formulation (2). For QPFS, a sec-
ond level of approximation was further proposed, where the
quadratic programming problem is approximated with one
at a lower dimension, using only the largest eigenvalues of
(the Nyström approximated) H. As opposed to QPFS, for
the proposed SPECCMI formulation, only one level of ap-
proximation, i.e. approximating Q, is necessary. In general,
Nyström approximation quality improves with increasing p.
With a fixed sampling rate, approximation is better when
there exists more redundancy in Q, i.e. there are similar
features.

4. EXPERIMENTAL EVALUATION
We perform a series of experiments to evaluate the effi-

ciency and effectiveness of the two novel MI-based feature
selection frameworks, namely SPECCMI and SDPCMI. First,



Table 2: Average time (in seconds) required for solv-
ing SDPCMI and SPECCMI at different problem sizes
(given pre-computed similarity matrices Q and H).
Dataset #Features n SDPCMI SPECCMI

Waveform 21 0.78 ± 0.07 0.005 ± 0.001
Promoter 57 1.18 ± 0.44 0.005 ± 0.001
Optdigits 64 1.59 ± 1.27 0.005 ± 0.001
Musk 166 3.38 ± 0.15 0.005 ± 0.000
Arrhythmia 257 9.46 ± 0.20 0.006 ± 0.001
Lung cancer 325 16.92 ± 0.73 0.007 ± 0.005

n > 700 N/A See Sec. 4.2

we compare SPECCMI and SDPCMI in terms of their ca-
pability to approximate QIPCMI, and draw the conclusion
that SPECCMI is the preferred approach. Second, we test
SPECCMI against QPFS in terms of scalability, and draw
the conclusion that SPECCMI is much more computationally
scalable. Lastly, we compare SPECCMI with other MI-based
feature selection techniques on an extensive set of 15 small
and medium sized real life data sets and 4 large datasets.
The experiments were carried out on an Intel Core-i7 2.9Ghz
PC with 16Gb of main memory.

4.1 SPECCMI vs. SDPCMI: a test of approxima-
tion tightness and scalability

We select several small size data sets in Table 4, namely
Waveform (n = 21), Promoter (n = 57), Optdigits (n = 64),
Musk (n = 166), Arrythmia (n = 257) and Lung cancer
(n = 325) for this experiment. To solve the SDPCMI for-
mulation, we employ the CVX toolbox for convex optimiza-
tion [12], with the underlying solver being SDPT3 [23]. We
set the number of features to be selected k to the range
[1,min(n, 100)], thus in total there are 442 test cases. The
average runtime comparison for SDPCMI and SPECCMI (for
the ranking phase) is reported in Table 2. For these small
problems, the time required for SPECCMI is negligible, while
SDPCMI is orders of magnitude slower, but still acceptable.
While SDPCMI running time does not seem a problem, it
exhibits a large memory footprint. In fact, for problems
with n ∼ 700, CVX returns an out-of-memory error2 on our
PC. Note that the number of variables in the relaxed space
for semidefinite programming is O( 1

2
n2). For example, with

n = 500, CVX reports problem size of 125,751 variables and
employs additionally ∼ 8Gb of memory.

We next compare SDPCMI and SPECCMI in terms of the
objective value of the original 0–1 problem QIPCMI in (18).
Of all the 442 test cases, SDPCMI and SPECCMI return differ-
ent results in only 63 cases (∼ 14%), within which SDPCMI

‘wins’ over in 46 cases (∼ 73%). Thus it can be seen that
SDPCMI tends to outperforms SPECCMI. This observation
conforms well with previous studies, that semidefinite re-
laxation provides tighter approximation than spectral relax-
ation, as in other hard combinatorial problems such as graph
max-cut. Nevertheless, the difference herein observed, if any,
is often minor. More specifically, we have 58/63 cases in
which the absolute relative difference, computed as |objSDP−
objSPEC |/objSPEC (where objSDP and objSPEC are the ob-
jective values of the SDPCMI and SPECCMI approximated
solution respectively), is < 0.5%. Furthermore, a closer in-

2Technically, we could employ more virtual memory using
hard disk to circumvent memory shortage. But this results
in a huge running time due to the high latency of hard disks.

spection reveals that in all cases, the feature sets differ in at
most 2 features. For the rest 379/442 cases (86%), SDPCMI

and SPECCMI return identical objective value and identical
feature sets. For the smallest Waveform data set, we also
compute the optimal objective value found by exhaustive
enumeration. In this case, the maximum relative difference
between the optimal objective and that of SPECCMI is only
0.07%, confirming the effectiveness of the two approximation
schemes. For the other larger data sets, exhaustive enumer-
ation is unacceptably slow, even with k = 5, ruling out this
brute-force approach as a practical solution.

From this set of experiment, we draw the conclusion that,
while semidefinite programming tends to generate tighter
approximation, the difference is negligible. More impor-
tantly, the two techniques most often generate identical fea-
ture sets. In view of the fact that SPECCMI is significantly
simpler and more computationally efficient, we therefore
promote SPECCMI as the method of choice. In the next sec-
tions, we establish the efficiency and effectiveness of SPECCMI

against other popular MI-based feature selection approaches.

4.2 SPECCMI vs. QPFS: a test of scalability
To fix a concrete idea about how scalable and speedy

dominant eigenvalue computation is, compared to quadratic
convex optimization, we generate 10 random positive defi-
nite Q matrices for each size ranging from 1,000 to 30,000
(and also random relevancy vectors f), and solve the QPFS

and SPECCMI problems using popular off-the-shelf solvers,
specifically those provided by Matlab with default options.
The average wall-clock time to solve these problems is pro-
vided in Table 3. Note that at n > 16, 000, Matlab solver
(quadprog) returned an out-of-memory error for QPFS. On
average, we observe that QPFS running time is two or more
orders of magnitude slower than SPECCMI. For compari-
son, the ranking time for the incremental MRMR approach
on the same similarity matrices is also reported in Table
3. With a carefully tuned implementation3, MRMR out-
paces SPECCMI in running time, but practically this differ-
ence should not be a major concern.

In terms of practical implementation, the solution to SPECCMI

amounts to finding the dominant eigenvector of the Hessian
matrix Q. Algorithmically, this can be done as simply as
repeatedly applying Q to any nondegenerate initial solution
(the power method). In practice, dominant eigenvalue find-
ing is a basic and efficient operation, which is built-in at the
core of most, if not all, numerical packages. On the other
hand, QPFS requires the solution to a quadratic convex opti-
mization problem with linear constraints, which is arguably
not always readily available as eigenvector computation. A
further advantage of the SPECCMI formulation over QPFS is
that its solution via eigenvector decomposition is much more
amenable to parallel computation, and can be implemented
straightforwardly, readily exploiting the benefit of currently
popular multi-core PC systems. Parallel implementation for
quadratic and semi-definite programming on the other hand
is an advanced research topic [26].

3Implementation details can have considerable effects on the
actual run time of the algorithms. Here, we employ our
own optimized C++ implementation for MRMR to ensure
its competitiveness, given that the same code implemented
in Matlab could be 40-100 times slower.



Table 3: Average time (in seconds) required for
ranking the features at different problem sizes (given
pre-computed similarity matrices Q and H).
#Features QPFS SPECCMI MRMR

1,000 0.81 ± 0.11 0.03 ± 0.01 0.01 ± 0.00
5,000 55.94 ± 5.14 0.81 ± 0.03 0.17 ± 0.02

10,000 417.22 ± 25.23 2.91 ± 0.26 0.68 ± 0.04
13,000 1026.73 ± 85.99 5.12 ± 0.45 1.17 ± 0.06
16,000 2012.63 ± 157.15 7.66 ± 0.89 1.97 ± 0.41
20,000 N/A 10.64 ± 0.30 2.63 ± 0.11
30,000 N/A 25.03 ± 1.42 6.05 ± 0.25

Table 4: Dataset summary. n: #features, d: #sam-
ples, #C: #classes, Error: average cross validation
error rate (%) using all features.

Data n d #C Error Source
NCI60 9996 60 10 43.3 [21] [20]
SRBCT 2308 84 4 1.2 [21]
Lung 325 73 7 12.3 [20] [7]
Colon 2000 62 2 17.7 [7]
Leukemia 7129 73 2 1.4 [7]
Lymphoma 4026 96 9 3.1 [7]
Promoter 57 106 2 16.0 [1]
Spambase 57 4601 2 9.5 [1]
Musk2 166 6598 2 4.9 [1]
Arrhythmia 257 430 2 21.6 [1]
Multi-features 649 2000 10 1.6 [1]
Waveform 21 5000 3 13.0 [1]
Optdigits 64 3823 10 1.8 [1]
Gisette 5000 6000 2 50.0 [1]
Madelon 500 2000 2 34.7 [1]

4.3 Small and medium data sets
We compare the proposed SPECCMI method with state of

the art MI-based feature selection approaches on an exten-
sive set of 15 well-known public datasets used in previous
research [3, 14, 20, 21], covering a wide range of number of
features, samples and classes. Feature selection methods
are compared in terms of the average cross validation (CV)
classification error rate on the range of 10 to 100 features in
step of 1 (or 10 to n if n < 100). We employ 10-fold CV
for datasets with number of samples d ≥ 100 and leave-one-
out CV otherwise. Following [14,21], the based classifier for
most data sets is chosen as linear SVM (with the regulariza-
tion parameter set to 1), except for the Gisette and Madelon
datasets, where a 3-NN classifier was used following [3]. De-
tails of the datasets used are given in Table 4. Continuous
features were discretized using Fayyad and Irani’s minimum
description length (MDL) method [8]. Feature selection was
done on discretized data, while classification was performed
on the original feature space.

Apart from the feature selection approaches mentioned
herein, namely MRMR, EMRMR, QPFS and SPECCMI, we
also compare our approach with other well-known MI based
methods, namely maximum relevance (maxRel), mutual in-
formation quotient (MIQ) [7] and conditional infomax fea-
ture extraction (CIFE) [16]. The connections between these
methods are presented in great details in [3]. We note that
[3] recommends the so-called joint mutual information (JMI),
maxXi

∑
Xj∈S I(Xi, Xj ;C), as the criterion of choice, for

providing ‘the best tradeoff in terms of accuracy, stability

and flexibility with small samples’. We note that the JMI
criterion is in fact exactly equivalent to the EMRMR crite-
rion presented herein, and also the ‘average-CMIM’ criterion
in [14]. For QPFS the balancing factor α was set as recom-
mended in [21]. SPECCMI requires no parameter tuning.
We implemented and optimized the codes for all the above
methods in Malab/C++, which are made publicly available
via our website.

The experimental results for all methods are presented in
Table 5. In order to summarize the statistical significance of
the findings, as in [14], we employ the one sided paired t-test
at 5% significance level to test the hypothesis that SPECCMI

or a compared method performs significantly better than
the other. Overall, we found the proposed SPECCMI frame-
work to perform strongly against other popular MI-based
criteria for feature selection. In particular, SPECCMI consis-
tently outperforms the alternative global formulation QPFS.
Of the incremental methods, SPECCMI strongly outperforms
maxRel, MIQ and CIFE. On the other hand, MRMR and
EMRMR are two leading local algorithms, being only nar-
rowly behind SPECCMI. The bold entries in Table 5 indicate
the best performing algorithms (in terms of the average er-
ror rate and its standard deviation)—although the differ-
ence compared with other methods might not necessarily
be statistically significant. The distribution of the ‘bold
entries’ seems to suggest that no algorithm is universally
dominant—a reminiscence of the no free lunch theorem for
machine learning [25]. Nevertheless, from a practical view-
point, for the supervised feature selection problem, one can,
and should, try multiple feature selection strategies and use,
e.g. the cross validation error rate as a guidance to choose
the final set of features. From this perspective, we propose
that SPECCMI is a valuable addition to the current literature
on feature selection.

4.4 Large data
We employ four datasets from the handwritten Chinese

character database [17] as detailed in Table 6. These data
are characterized by a large number of training samples, and
especially a very large number of classes, making classifica-
tion a challenging task. Indeed, the SVM implementation
we employed, namely LibSVM [4], does not scale very well
with this application where it has to train a large number
(∼ 3700) of one-versus-all classifiers. We therefore resort to
a much simpler and more computationally efficient nearest
class mean (NCM) classifier [19]. We select the top two per-
forming greedy algorithms, namely MRMR and EMRMR,
from section 4.3 together with QPFS and SPECCMI for this
test. In addition, we test the effectiveness of Nyström ap-
proximation with both SPECCMI and QPFS. We train the
classifier on the train data and test accuracy is estimated
on the separate test data. Since the number of samples
is large, we expect this performance indicator to be repre-
sentative. On these data, the MDL algorithm [8] binarizes
most features, i.e. discretizing to only 2 states. Observ-
ing that the very large number of samples can support a
finer discretization, we therefore also discretize the data to
5 and 10 equal-frequency bins. While finding the optimal
discretization strategy is beyond the scope of this paper,
we summarize our finding as follows: at lower number of
bins, i.e. 2 and 5, methods that are based on the MI such as
MRMR and QPFS outperform methods based on conditional
MI, such that SPECCMI and EMRMR. On the other hand,



Table 5: Cross validation error rate comparison of SPECCMI against other methods. W: win (+), T: tie (=),
L: loss (−) for SPECCMI against the compared method according to the 1-sided paired t-test.

Data maxRel MIQ CIFE MRMR EMRMR∗ QPFS SPECCMI

Lung 14.2 ± 5.7 (+) 12.0±2.7 (+) 16.0±2.2 (+) 9.8±3.4 (+) 9.7±3.4 (+) 10.4±2.8 (+) 9.4±2.5
NCI60 35.1 ± 8.6 (+) 40.1±14.1 (+) 64.9±3.6 (+) 30.5±10.7 (=) 30.2±8.7 (−) 28.1±9.4 (−) 31.3±8.4
Colon 12.8 ± 1.5 (=) 12.8±1.6 (=) 14.4±2.7 (+) 12.8±1.4 (=) 12.0±1.0 (−) 13.2±1.4 (+) 12.7±1.2
Leukemia 3.1 ± 1.0 (+) 1.0±1.6 (−) 5.0±1.0 (+) 2.4±0.8 (−) 2.5±0.6 (−) 3.0±1.0 (=) 2.9±1.0
Lymphoma 4.3 ± 2.5 (=) 6.0±5.0 (+) 16.6±2.9 (+) 4.1±2.1 (=) 4.0±2.4 (=) 5.5±3.7 (+) 4.3±3.9
SRBCT 0.8 ± 1.1 (−) 2.1±3.5 (+) 11.8±3.7 (+) 0.6±1.2 (−) 0.9±1.2 (=) 0.1±0.3 (−) 0.9±1.3
Promoter 8.7 ± 2.9 (=) 8.9±3.4 (=) 12.6±2.4 (+) 9.4±3.4 (+) 8.3±3.2 (=) 8.7±3.3 (=) 8.3±3.1
Spambase 11.5 ± 1.4 (+) 12.3±3.2 (+) 17.9±4.1 (+) 11.3±1.5 (=) 11.4±1.5 (+) 12.0±1.9 (+) 11.3±1.5
Musk2 7.8 ± 1.8 (+) 7.1±1.6 (−) 7.4±1.1 (=) 7.4±1.6 (=) 7.4±1.0 (=) 7.4±1.9 (=) 7.4±0.9
Arryth. 22.2 ± 1.0 (+) 24.0±3.5 (+) 24.6±1.8 (+) 22.3±1.5 (+) 22.2±0.8 (+) 22.8±2.0 (+) 21.7±0.7
Multifeat. 2.0 ± 0.9 (+) 3.2±2.8 (+) 2.8±0.7 (+) 1.8±0.4 (=) 1.8±0.6 (=) 2.4±1.3 (+) 1.9±0.6
Optdigits 3.3 ± 2.5 (+) 3.3±2.6 (+) 3.4±2.5 (+) 3.0±2.0 (=) 3.0±2.2 (=) 4.1±4.0 (+) 3.1±2.2
Waveform 13.9 ± 1.5 (=) 14.2±1.3 (+) 16.3±2.1 (+) 13.7±1.0 (=) 13.7±1.1 (=) 13.7±1.0 (=) 13.7±1.0
Gisette 7.8 ± 2.7 (+) 9.2±4.2 (+) 6.7±1.8 (+) 6.0±2.5 (=) 6.4±2.4 (+) 8.0±2.3 (+) 6.1±2.2
Madelon 18.7 ± 3.2 (+) 37.4±3.7 (+) 17.5±3.4 (+) 28.2±2.2 (+) 16.0±3.1 (=) 23.3±3.5 (+) 15.9±3.2
#W/T/L: 10/4/1 11/2/2 14/1/0 4/9/2 4/8/3 9/4/2
∗Also equivalent to the JMI and ave-CMIM criteria, see [3, 14]

Table 6: Large dataset summary. n: #features, d:
#samples, #C: #classes, Error: test error rate (%)
using all features with NCM classifier.

Data n d (train) d (test) #C Error
HWDB1.0 512 1,246,991 309,684 3,740 21.93
HWDB1.1 512 897,758 223,991 3,755 26.42
OLHWDB1.0 512 1,256,009 314,042 3,740 15.99
OLHWDB1.1 512 898,573 224,559 3,755 17.18

at higher number of bins, EMRMR and SPECCMI performs
slightly better than QPFS and MRMR. Our hypothesis is
that a larger number of bins can leverage the large number
of samples such that higher-dimensional mutual information
quantities, such as the conditional MI, could be estimated at
greater resolution. The test error rate on sets of up to 200
features on the 10-bin discretized data are reported in Figure
2(a-d). It is noted that SPECCMI+Nyström at a sampling
rate of γ = 0.2 perform remarkably well on the HWDB1.0
and HWDB1.1 datasets, in fact better than SPECCMI—a
somewhat intriguing observation, while being slightly better
than QPFS on the OLHWDB1.0 and OLHWDB1.1 data.
The effect of different sampling rate for SPECCMI+Nyström
on the OLHWDB1.1 is presented in Fig. 2(e). The wall clock
execution time of all algorithms on each data set is presented
in Fig. 2(f). It is observed that methods that make use of
the conditional MI such as SPECCMI and EMRMR are more
expensive than methods that make use of the MI such as
QPFS and MRMR, mainly due to the fact that computing
conditional MI is more time consuming. SPECCMI and EM-
RMR admit similar execution time, while QPFS and MRMR
admit similar execution time. Nyström approximation sig-
nificantly reduces the execution time for both SPECCMI and
QPFS.

5. CONCLUSION
In this paper, we have introduced a novel global optimiza-

tion framework for the mutual information based feature
selection problem. Our criterion for optimization is formu-
lated based on the conditional mutual information, an infor-
mation theoretic quantity which neatly captures feature rel-
evancy, redundancy as well as class-conditional redundancy,
leading to a neat homogeneous quadratic optimization cri-
terion. We have demonstrated that this global formulation

can be efficiently solved via spectral relaxation, admitting a
very simple numerical solution. We also compared the spec-
tral relaxation approach with the more sophisticated semi-
definite relaxation, and establish that spectral relaxation re-
turns mostly identical solution at a much cheaper computa-
tional cost. Compared to the local formulations MRMR
and EMRMR, the global formulations can overcome the is-
sue of local minima faced by local greedy schemes. Com-
pared to the alternative global QPFS formulation, our new
SPECCMI framework naturally resolves several theoretical is-
sues associated with the previous global QPFS formulation.
Moreover, SPECCMI admits a significantly simpler and much
more efficient global solution, yet without any strict condi-
tion, such as positive definiteness, on the Hessian matrix.
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Figure 2: Test accuracy and execution time on the handwritten Chinese character database.
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